SHIVA - Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere


Puplications within SHIVA

Refereed Literture

  • Aschmann, J., et al. (2009): Modeling the transport of very short–lived substances into the tropical upper troposphere and lower stratosphere, Atmos. Chem. Phys., 9, 9237–9247, 2009.
  • Aschmann, J., et al. (2011): Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere, Atmos. Chem. Phys., 11, 2671–2687, doi:10.5194/acp–11–2671–2011, 2011.
  • Aschmann, J., and B.–M. Sinnhuber (2013): Contribution of very short-lived substances to stratospheric bromine loading: uncertainties and constraints, Atmos. Chem. Phys., 13, 1203-1219, 2013, doi:10.5194/acp–13–1203–2013, 2013.
  • Ashfold, M. J. , et al (2012): Transport of short–lived species into the Tropical Tropopause Layer, Atmos. Chem. Phys. Discuss., 12, 441–478, 2012.
  • Ashfold, M. J. et al. (2014): Estimates of tropical bromoform emissions using an inversion method, Atmos. Chem. Phys., 14, 979 –994, 2014.
  • Brinckmann, S., et al. (2012) Short-lived brominated hydrocarbons – observations in the source regions and the tropical tropopause layer, Atmos. Chem. Phys., 12, 1213–1228, doi:10.5194/acp–12–1213–2012, 2012.
  • Brioude, J., et al. (2010): Variations in ozone depletion potentials of very short–lived substances with season and emission region, Geophys. Res. Lett., 37, L19804, doi:10.1029/2010GL044856, 2010.
  • Fuhlbrügge, S., et al. (2013): Impact of the marine atmospheric boundary layer conditions on VSLS abundances in the eastern tropical and subtropical North Atlantic Ocean, Atmos. Chem. Phys., 13, 6345–6357, doi:10.5194/acp–13–6345–2013, SHIVA special issue, 2013.
  • Großmann, K., et al. (2013): Iodine monoxide in the Western Pacific marine boundary layer, Atmos. Chem. Phys., 13, 3363–3378, doi:10.5194/acp–13–3363–2013, 2013.
  • Hendrick, F., et al. (2012) : Analysis of stratospheric NO2 trends above Jungfraujoch using ground-based UV–visible, FTIR, and satellite nadir observations, Atmos.Chem.Phys., 12, 8851–8864, doi:10.5194/acp–12–8851–2012, 2012.
  • Hossaini, R., et al. (2010): Bromoform and Dibromomethane in the tropics: a 3–D model study of chemistry and transport, Atmos. Chem. Phys., 10(2), 719–735, 2010.
  • Hossaini, et al. (2012): Modelling future changes to the stratospheric source gas injection of biogenic bromocarbons, Geophys. Res. Letts., Vol. 39, L20813, 4PP, doi:10.1029/2012GL053401, 2012.
  • Hossaini, et al. (2013): Evaluating global emission inventories of biogenic bromocarbons, Atmos. Chem. Phys., 13, 11819–11838, 2013.
  • Hossaini, R., et al. (2012): The contribution of natural and anthropogenic very short–lived species to stratospheric bromine, Atmos. Chem. Phys., 12, 371–380, 2012.
  • Keng, F.S.L., et al. (2013): Volatile halocarbon emissions by three tropical brown seaweeds under different irradiances, Journal of Applied Phycology.,Jan. 19, 2013, DOI 10.1007/s10811–013–9990–x, 2013
  • Kreycy, S., et al. (2013): Atmospheric test of the J(BrONO2)/kBrO+NO2 ratio: implications for total stratospheric Bry and bromine–mediated ozone loss, Atmos. Chem. Phys., 13, 6263–6274, doi:10.5194/acp–13–6263–2013, 2013.
  • Krüger, K., et al. (2009): Variability of residence time in the Tropical Tropopause Layer during Northern Hemisphere winter, Atmos. Chem. Phys., 9, 6717–6725, 2009.
  • Krüger, K. and B. Quack (2013): Introduction to special issue: the TransBrom Sonne expedition in the tropical West Pacific, Atmos. Chem. Phys., 13, 9439–9446, doi:10.5194/acp–13–9439–2013, 2013.
  • Krysztofiak, G., et al. (2012): Detailed modeling of the atmospheric degradation mechanism of brominated very short lived species, Atmospheric Environment 59, 512–532, doi:10.1016/j.atmosenv.2012.05.026, 2012.
  • Leedham, E., et al. (2013): Emission of atmospherically significant halocarbons by naturally occurring and farmed tropical macroalgae, Biogeosciences, 10, 3615–3633, doi:10.5194/bg–10–3615–2013, 2013.
  • Marécal V., et al. (2012): What do we learn on bromoform transport and chemistry in deep convection from fine scale modelling?, Atmos. Chem. Phys., 12, 6073–6093, doi:10.5194/acp–12–6073–2012 2012.
  • Newland, M.J., et al. (2013): Southern hemispheric halon trends and global halon emissions, 1978–2011, Atmos. Chem. Phys., 13, 5551–5565, doi:10.5194/acp–13–5551–2013, 2013.
  • Ridder, T., et al. (2012): Ship–borne FTIR measurements of CO and O3 in the western pacific from 43 N to 35 S: an evaluation of sources, Atmos. Chem. Phys., 12, 815–828, 2012.
  • Rozanov, A., et al. (2011): BrO vertical distributions from SCIAMACHY limb measurements: comparison of algorithms and retrieval results, Atmos. Meas. Tech., 4, 1319–1359, doi:10.5194/amt–4–1319–2011, 2011.
  • Sadeghi A., et al. (2012): Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper–spectral satellite data., Biogeosciences, 9, 2127–2143, doi:10.5194/bg–9–2127–2012, 2012a.
  • Sadeghi A., et al. (2012): Improvement to the PhytoDOAS method for identification of coccolithophores using hyper–spectral satellite data., 1055–1070, 2012, doi:10.5194/os–8–1055–2012, OceanSci.,8, 2012b.
  • Salawitch, R.J., et al. (2010): A new interpretation of total column BrO during Arctic Spring, Geophys. Res. Letts., L21805, doi:10.1029/2010GL043798, 2010.
  • Schofield, R., et al. (2011): Sensitivity of stratospheric Bry to uncertainties in very short lived substance emissions and atmospheric transport, Atmos. Chem. Phys., 11, 1379–1392, 2011.
  • Stemmler, I. et al. (2013): Numerical modelling of methyl iodide in the eastern tropical Atlantic, Biogeosciences, 10, 4211–4225, doi:10.5194/bg–10–4211–2013, 2013.
  • Tegtmeier, et al. (2012): Emission and transport of bromocarbons: from the West Pacific ocean into the stratosphere, Atmos. Chem. Phys., 12, 10633–10648, doi:10.5194/acp–12–10633–2012, 2012.
  • Tegtmeier, et al. (2013): The contribution of oceanic methyl iodide to stratospheric iodine, Atmos. Chem. Phys., 13, 11869–11886, doi:10.5194/acp–13–11869–2013, 2013.
  • Theys, N., et al. (2011): Global observations of tropospheric BrO columns using GOME-2 satellite data, Atmos. Chem. Phys., 1791–1811/doi:10.5194/acp–11–1791–2011, 2011.
  • Wisher, A., et al. (2013): C. A. M.: Very short–lived bromomethanes measured by the CARIBIC observatory over the North Atlantic, Africa and South–East Asia during 2009-2013, Atmos. Chem. Phys. Discuss., 13, 29947–29981, doi:10.5194/acpd–13–29947–2013, 2013.
  • Wright, J.S., et al. (2011): The influence of summertime convection over Southeast Asia on water vapor in the tropical stratosphere, J. Geophys. Res., 116, D12302, doi:10.1029/2010JD015416, 2011.
  • Wright; j. S. and S. Fueglistaler (2013): Large differences in reanalyses of diabatic heating in the tropical upper troposphere and lower stratosphere, Atmos. Chem. Phys., 13, 9565–9576, doi:10.5194/acp–13–9565–2013, 2013.
  • Zindler C., et al. (2013): Sulphur compounds, methane and phytoplankton: interactios along a north-south transit in the western Pacific Ocean, Biogeosciences 10: 3297–3311, 2013.
  • Ziska F., B. Quack, et al. (2013): Global sea–to–air flux climatology for bromoform, dibromomethane and methyl iodide,Atmos. Chem. Phys., 13, 8915–8934, doi:10.5194/acp–13–8915–2013, 2013.

Submitted Refereed Literture

  • Braesicke, P., et al. (2013): Consistent circulation differences in the Southern Hemisphere caused by ozone changes: a chemistry–climate model and observational study, Atmos. Chem. Phys. Discuss., 13, 8455–8487, 2013.
  • Cheah, W., et al. (2013): Photophysiological state of natural phytoplankton communities in the South China Sea and Sulu Sea, Biogeosciences Discuss., 10, 12115–12153, 2013, doi:10.5194/bgd–10–12115–2013, SHIVA special issue, 2013.
  • Hamer, P.D., et al. (2013): Modelling the Chemistry and Transport of Bromoform within a Sea Breeze Driven Convective System During the SHIVA Campaign, Atmos. Chem. Phys. Discuss., SHIVA special issue, 2013.
  • Hendrick, F., et al. (2013): Four Years of Ground-based MAX–DOAS Observations of HONO and NO2 in the Beijing Area, Atmos. Chem. Phys. Discuss., 13, 10621–10660, 2013.
  • Hepach, H., et al. (2013): Drivers of diel and regional variations of halocarbon emissions from the tropical North East Atlantic, Atmos. Chem. Phys. Discuss., 13, 19701–19750, 2013, doi:10.5194/acpd–13–19701–2013, SHIVA special issue, 2013.
  • Hommel, R., et al. (2013): Chemical composition and severe ozone loss derived from SCIAMACHY and GOME–2 observations during Arctic winter 2010/2011 in comparisons to Arctic winters in the past, Atmos. Chem. Phys. Discuss., 13, 16597–16660, SHIVA special issue, 2013.
  • Liang, et al. (2013): Convective transport of very–short–lived bromocarbons to the stratosphere, Atmos. Chem. Phys. Discuss., 14, 651–676, doi:10.5194/acpd–14–651–2014, 2014.
  • Mohd Nadzir, M. S., et al. (20139. Bromocarbons in the tropical coastal and open ocean atmosphere during the Prime Expedition Scientific Cruise 2009 (PESC 09), Atmos. Chem. Phys. Discuss., 14, 953–984, doi:10.5194/acpd–14–953–2014, 2014.
  • Ooi, S.H. , A.A. Samah, and P. Braesicke (2013): Primary productivity and its variability in the equatorial South China Sea during the northeast monsoon, Atmos. Chem. Phys. Discuss., 13, 21573–21608, doi:10.5194/acpd–13–21573–2013, SHIVA special issue, 2013.
  • Rex, M., et al. (2013): A Tropical West Pacific OH minimum and implications for stratospheric composition, Atmos. Chem. Phys. Discuss., 13, 28869–28893, doi:10.5194/acpd–13–28869–2013, 2013.
  • Robinson, A. D., et al. (2014): Long term halocarbon observations from a coastal and an inland site in Sabah, Malaysian Borneo, Atmos. Chem. Phys. Discuss., 14, 1919–1969, doi:10.5194/acpd–14–1919–2014, 2014.
  • Wisher, A. (2013): Very short–lived bromomethanes measured by the CARIBIC observatory over the North Atlantic, Africa and South-East Asia during 2009–2013, Atmos. Chem. Phys. Discuss., 13, 29947–29981, doi:10.5194/acpd–13–29947–2013, 2013.
to top of page